On oversampling imbalanced data with deep conditional generative models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generative Oversampling for Mining Imbalanced Datasets

One way to handle data mining problems where class prior probabilities and/or misclassification costs between classes are highly unequal is to resample the data until a new, desired class distribution in the training data is achieved. Many resampling techniques have been proposed in the past, and the relationship between resampling and cost-sensitive learning has been well studied. Surprisingly...

متن کامل

Adaptive Oversampling for Imbalanced Data Classification

Data imbalance is known to significantly hinder the generalization performance of supervised learning algorithms. A common strategy to overcome this challenge is synthetic oversampling, where synthetic minority class examples are generated to balance the distribution between the examples of the majority and minority classes. We present a novel adaptive oversampling algorithm, VIRTUAL, that comb...

متن کامل

Learning Structured Output Representation using Deep Conditional Generative Models

Supervised deep learning has been successfully applied to many recognition problems. Although it can approximate a complex many-to-one function well when a large amount of training data is provided, it is still challenging to model complex structured output representations that effectively perform probabilistic inference and make diverse predictions. In this work, we develop a deep conditional ...

متن کامل

On Unifying Deep Generative Models

Deep generative models have achieved impressive success in recent years. Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs), as powerful frameworks for deep generative model learning, have largely been considered as two distinct paradigms and received extensive independent studies respectively. This paper aims to establish formal connections between GANs and VAEs through...

متن کامل

On Unifying Deep Generative Models

Deep generative models have achieved impressive success in recent years. Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs), as powerful frameworks for deep generative model learning, have largely been considered as two distinct paradigms and received extensive independent studies respectively. This paper aims to establish formal connections between GANs and VAEs through...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Expert Systems with Applications

سال: 2021

ISSN: 0957-4174

DOI: 10.1016/j.eswa.2020.114463